RSA与ECDHE
RSA算法的TLS四次握手
检测对方的数字签名, 验证对方是否有数字签名对应的私钥,并安全地告知对称加密密钥。
TLS 第一次握手:
客户端首先会发一个「Client Hello」消息,字面意思我们也能理解到,这是跟服务器「打招呼」。
消息里面有客户端使用的 TLS 版本号、支持的密码套件列表,以及生成的随机数(Client Random),这个随机数会被服务端保留,它是生成对称加密密钥的材料之一。
TLS 第二次握手
当服务端收到客户端的「Client Hello」消息后,会确认 TLS 版本号是否支持,和从密码套件列表中选择一个密码套件,以及生成随机数(Server Random)。
TLS 第三次握手
客户端验证完证书后,认为可信则继续往下走。接着,客户端就会生成一个新的随机数 (*pre-master*),用服务器的 RSA 公钥加密该随机数,通过「Change Cipher Key Exchange」消息传给服务端。
TLS 第四次握手
服务器也是同样的操作,发「Change Cipher Spec」和「Encrypted Handshake Message」消息,如果双方都验证加密和解密没问题,那么握手正式完成。
RSA 算法的缺陷
使用 RSA 密钥协商算法的最大问题是不支持前向保密。
因为客户端传递随机数(用于生成对称加密密钥的条件之一)给服务端时使用的是公钥加密的,服务端收到到后,会用私钥解密得到随机数。所以一旦服务端的私钥泄漏了,过去被第三方截获的所有 TLS 通讯密文都会被破解。
为了解决这个问题,后面就出现了 ECDHE 密钥协商算法,我们现在大多数网站使用的正是 ECDHE 密钥协商算法。
HTTPS ECDHE 握手解析
HTTPS 常用的密钥交换算法有两种,分别是 RSA 和 ECDHE 算法。
离散对数

上图的,底数 a 和模数 p 是离散对数的公共参数,也就说是公开的,b 是真数,i 是对数。知道了对数,就可以用上面的公式计算出真数。但反过来,知道真数却很难推算出对数。
特别是当模数 p 是一个很大的质数,即使知道底数 a 和真数 b ,在现有的计算机的计算水平是几乎无法算出离散对数的,这就是 DH 算法的数学基础。
根据私钥生成的方式,DH 算法分为两种实现:
- static DH 算法,这个是已经被废弃了;
- DHE 算法,现在常用的;
static DH 算法里有一方的私钥是静态的,也就说每次密钥协商的时候有一方的私钥都是一样的,一般是服务器方固定,即 a 不变,客户端的私钥则是随机生成的。
于是,DH 交换密钥时就只有客户端的公钥是变化,而服务端公钥是不变的,那么随着时间延长,黑客就会截获海量的密钥协商过程的数据,因为密钥协商的过程有些数据是公开的,黑客就可以依据这些数据暴力破解出服务器的私钥,然后就可以计算出会话密钥了,于是之前截获的加密数据会被破解,所以 static DH 算法不具备前向安全性。
DHE算法
既然固定一方的私钥有被破解的风险,那么干脆就让双方的私钥在每次密钥交换通信时,都是随机生成的、临时的,这个方式也就是 DHE 算法,E 全称是 ephemeral(临时性的)。
所以,即使有个牛逼的黑客破解了某一次通信过程的私钥,其他通信过程的私钥仍然是安全的,因为每个通信过程的私钥都是没有任何关系的,都是独立的,这样就保证了「前向安全」。
但是,由于DHE 算法计算性能不佳,因为需要做大量的乘法,为了提升 DHE 算法的性能,所以就出现了现在广泛用于密钥交换算法 —— ECDHE 算法。
ECDHE 算法
ECDHE 算法是在 DHE 算法的基础上利用了 ECC 椭圆曲线特性,可以用更少的计算量计算出公钥,以及最终的会话密钥。
小红和小明使用 ECDHE 密钥交换算法的过程:
- 双方事先确定好使用哪种椭圆曲线,和曲线上的基点 G,这两个参数都是公开的;
- 双方各自随机生成一个随机数作为私钥d,并与基点 G相乘得到公钥Q(Q = dG),此时小红的公私钥为 Q1 和 d1,小明的公私钥为 Q2 和 d2;
- 双方交换各自的公钥,最后小红计算点(x1,y1) = d1Q2,小明计算点(x2,y2) = d2Q1,由于椭圆曲线上是可以满足乘法交换和结合律,所以 d1Q2 = d1d2G = d2d1G = d2Q1 ,因此双方的 x 坐标是一样的,所以它是共享密钥,也就是会话密钥。
这个过程中,双方的私钥都是随机、临时生成的,都是不公开的,即使根据公开的信息(椭圆曲线、公钥、基点 G)也是很难计算出椭圆曲线上的离散对数(私钥)。